Modulation of dendritic action currents decreases the reliability of population spikes.

نویسندگان

  • L López-Aguado
  • J M Ibarz
  • O Herreras
چکیده

During synchronous action potential (AP) firing of CA1 pyramidal cells, a population spike (PS) is recorded in the extracellular space, the amplitude of which is considered a reliable quantitative index of the population output. Because the AP can be actively conducted and differentially modulated along the soma and dendrites, the extracellular part of the dendritic inward currents variably contributes to the somatic PS by spreading in the volume conductor to adjacent strata. This contribution has been studied by current-source density analysis and intracellular recordings in vivo during repetitive backpropagation that induces their selective fading. Both the PS and the ensemble action currents declined during high-frequency activation, although at different rates and timings. The decline was much stronger in dendrites than in the somatic region. At specific frequencies and for a short number of impulses the decrease of the somatic PS was neither due to fewer firing cells nor to decreased somatic action currents but to the blockade of dendritic action currents. The dendritic contribution to the peak of the somatic antidromic PS was estimated at approximately 30-40% and up to 100% at later times in the positive-going limb. The blockade of AP dendritic invasion was in part due to a decreased transfer of current from the soma that underwent a cumulative increase of conductance and slow depolarization during the train that eventually extended into the axon. The possibility of differential modulation of soma and dendritic action currents during APs should be checked when using the PS as a quantitative parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptically recruited apical currents are required to initiate axonal and apical spikes in hippocampal pyramidal cells: modulation by inhibition.

Dendritic voltage-dependent currents and inhibition modulate the information flow between synaptic and decision areas. Subthreshold and spike currents are sequentially recruited by synaptic potentials in the apical shaft of pyramidal cells, which may also decide cell output. We studied the global role of proximal apical recruited currents on cell output in vitro and in the anesthetized rat afte...

متن کامل

On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons.

Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchroni...

متن کامل

2-Adrenergic Receptors Modify Dendritic Spike Generation Via HCN Channels in the Prefrontal Cortex

Barth AM, Vizi ES, Zelles T, Lendvai B. 2-Adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. J Neurophysiol 99: 394–401, 2008. First published November 14, 2007; doi:10.1152/jn.00943.2007. Although dendritic spikes are generally thought to be restricted to the distal apical dendrite, we know very little about the possible modulatory mechanisms that...

متن کامل

Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus.

In vitro experiments suggest that dendritic fast action potentials may influence the efficacy of concurrently active synapses by enhancing Ca2+ influx into the dendrites. However, the exact circumstances leading to these effects in the intact brain are not known. We have addressed these issues by performing intracellular sharp electrode recordings from morphologically identified sites in the ap...

متن کامل

Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex.

Although dendritic spikes are generally thought to be restricted to the distal apical dendrite, we know very little about the possible modulatory mechanisms that set the spatial limits of dendritic spikes. Our experiments demonstrated that high-frequency trains of backpropagating action potentials avoided filtering in the apical dendrite and initiated all-or-none dendritic Ca(2+) transients ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2000